Written Exercises

In Exercises 1–10, refer to the triangle at the right. Find the missing length correct to the nearest hundredth. A calculator may be helpful.

 A
 1. $a = 10, b = 24, c = \underline{?}$ 2. $a = 5, b = 12, c = \underline{?}$

 3. $a = 8, b = 5, c = \underline{?}$ 4. $a = 13, b = 9, c = \underline{?}$

 5. $a = 8, b = 8, c = \underline{?}$ 6. $a = 16, b = 8, c = \underline{?}$

 7. $a = \underline{?}, b = 21, c = 29$ 8. $a = \underline{?}, b = 11, c = 17$

 9. $a = 6, b = \underline{?}, c = 40$ 10. $a = 5, b = \underline{?}, c = 8$

State whether or not the three given numbers could represent the lengths of the sides of a right triangle.

11. 20, 21, 29	12. 3, 9, 11
13. 12, 16, 20	14. 16, 32, 36
15. 15, 20, 25	16. 17, 34, 39
17. 2 <i>a</i> , 3 <i>a</i> , 4 <i>a</i>	18. 3 <i>a</i> , 4 <i>a</i> , 5 <i>a</i>
19. 8 <i>a</i> , 15 <i>a</i> , 17 <i>a</i>	20. 6 <i>a</i> , 7 <i>a</i> , 8 <i>a</i>

In Exercises 21–26, refer to the diagram for Exercises 1–10. Find the missing length correct to the nearest hundredth.

21. $a = b = 12, c = \frac{?}{2}$ **22.** $a = 15, b = \frac{1}{5}a, c = \frac{?}{2}$ **23.** $a = 18, b = \frac{1}{3}a, c = \frac{?}{2}$ **24.** $a = \frac{1}{2}b, b = 14, c = \frac{?}{2}$ **25.** $a = \frac{4}{5}b, b = 20, c = \frac{?}{2}$ **26.** $a = \frac{5}{7}b, b = 28, c = \frac{?}{2}$

In Exercises 27–30, refer to the diagram for Exercises 1–10. Find a and b correct to the nearest hundredth.

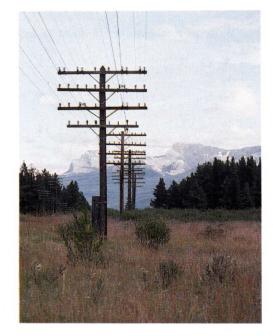
C 27. a = b, c = 60 28. a = 3b, c = 20

 29. $a = \frac{1}{3}b, c = 30$ 30. $a = \frac{2}{3}b, c = 52$

Computer Exercises

Write a BASIC program that will report whether three positive numbers entered with INPUT statements could represent the lengths of the sides of a right triangle. RUN the program for the following series of numbers.

1. 14, 48, 50	2. 0.8, 1.5, 1.7	3. 27, 36, 45
----------------------	-------------------------	---------------


532 Chapter 11

В

Problems

Make a sketch for each problem. Approximate each square root to the nearest hundredth. A calculator may be helpful.

- A 1. Find the length of each diagonal of a rectangle whose dimensions are 33 cm by 56 cm.
 - **2.** A guywire 20 m long is attached to the top of a telephone pole. The guywire is just able to reach a point on the ground 12 m from the base of the telephone pole. Find the height of the telephone pole.
 - **3.** A baseball diamond is a square 90 ft on a side. What is the length from first base to third base?
 - **4.** The dimensions of a rectangular doorway are 200 cm by 90 cm. Can a table top with a diameter of 210 cm be carried through the doorway?
 - 5. The base of an isosceles triangle is 18 cm long. The equal sides are each 24 cm long. Find the altitude.

- B 6. A right triangle has sides whose lengths in feet are consecutive even integers. Determine the length of each side.
 - 7. The longer leg of a right triangle is 6 cm longer than 6 times the shorter leg and also 1 cm shorter than the hypotenuse. Find the perimeter of the triangle.
 - 8. Find the area of a triangle with three sides of length 4 cm. (*Hint:* Find the height first.)
- **C** 9. What is the length of each diagonal of a cube that is 45 cm on each side?

- 10. Show that a triangle with sides of lengths $x^2 + y^2$, 2xy, and $x^2 y^2$ is a right triangle. Assume that x > y.
- **11.** What is the length of each diagonal of a rectangular box with length 55 cm, width 48 cm, and height 70 cm? Would a meter stick fit in the box?
- **12.** Gary is standing on a dock 2.0 m above the water. He is pulling in a boat that is attached to the end of a 5.2 m rope. If he pulls in 2.3 m of rope, how far did he move the boat?